Search results for "Photon entanglement"
showing 4 items of 4 documents
Entanglement swapping in a Franson interferometer setup
2007
We propose a simple scheme to swap the non local correlations, characteristic of a Franson interferometric setup, between pairs of frequency entangled photons emitted by distinct non linear crystals in a parametric down conversion process. Our scheme consists of two distinct sources of frequency entangled photons. One photon of each pair is sent to a separate Mach - Zender interferometer while the other photons of the pairs are mixed by a beam splitter and then detected in a Ou - Mandel interferometer. For suitably postselected joint measuremetns, the photons sent at the Mach -Zender show a coincidence photocount statistics which depends non locally on the settings of the two interferometer…
Atom-photon, atom-atom and photon-photon entanglement preparation via fractional adiabatic passage
2004
We propose a relatively robust scheme to generate maximally entangled states of (i) an atom and a cavity photon, (ii) two atoms in their ground states, and (iii) two photons in two spatially separate high-Q cavities. It is based on the interaction via fractional adiabatic passage of a three-level atom traveling through a cavity mode and a laser beam. The presence of optical phases is emphasized.
Generation and coherent manipulation of complex quantum states based on integrated frequency combs
2018
The investigation and use of integrated frequency comb sources (i.e. featured by equally-spaced discrete spectral modes) have recently provided a unique framework to address the challenges of generation and coherent manipulation of complex quantum states in on-chip devices. We exploit integrated frequency combs for generating entangled photon pairs, as well as multi-photon states, and high-dimensional (D-level, i.e. quDit) entangled photons. In particular, we manage to coherently manipulate such complex quantum systems by using telecommunications components (standard fiber telecom).
Entangled photons through thick scattering media: experiments and comparison with simulations of the biphoton wave function
2021
International audience; We report experimentally and numerically quantum correlations imaging through thick random media. We demonstrated that spatial correlations between twin photon are still detected but no in form of two-photon speckle-like patterns.